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INTRODUCTION

This report discussesthe progressmadeunderCrustalDynamicsProject fundingby the

Universityof TexasCenterfor SpaceResearchona widevarietyof topics,includinggeodesy,

geodynamics,andsatellitedynamics.Thereportis derivedfrom a manuscriptsubmittedto the

AmericanGeopohysicalUnionMonographdedicatedtotheCrustalDynamicsProject.

Theability to rangeaccuratelyfromtheEarth'ssurfaceto satellitescarryinglasercube-comer

reflectors,alongwith the launchingof theLageossatellitein May 1976,hasprovideda unique

capabilityfor studyingglobalsolid Earthdynamics[Johnson et al., 1976]. During the period

between Lageos launch through completion of the Crustal Dynamics Project at the end of 1991, the

satellite laser ranging (SLR) technique has evolved into one of the fundamental geophysical and

geodetic measurement techniques [Tapley et al., 1985; 1990, Frey and Bosworth, 1988]. The

primary goals of the SLR system development and demonstration were to measure tectonic motion

and Earth orientation. In the early 1980's, the technique achieved operational status in measuring

Earth orientation and global baselines with the precision required to study plate motion and

deformation. In addition, the technique has demonstrated unique abilities to measure both the

constant and time-varying gravitational field properties of the Earth, to provide a unique terrestrial

reference frame tied to the Earth's center of mass, and to study the dynamical effects of general

relativity. It is currently regarded as a required tracking system for altimetric satellites such as

TOPEX/POSEIDON and ERS- I.

The Lageos satellite, spherical in shape and covered with 426 comer cube reflectors, 422 of fused
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silicafor reflectancein thevisiblespectrumand4 of germaniumfor infraredreflectance,wasplaced

inanearlycircularorbitwithanaltitudeof oneEarthradius[Johnsonetal., 1976;CohenandSmith,

1985].Thecombinationof satellitedesignandorbit hasprovidedan idealrangingtargetfor the

SLRsystems,whichwereoriginallydevelopedin thei960's, andhavedevelopedfrommeterlevel

precisionto thecurrentsubcentimeterlevel. TheLageosorbitprovidesastablereferenceframefor

studyingtherotationof theEarth,therelativemotionof pointson theEarth'scrust,andthetime

variationof the long-wavelengthcomponentof theEarth'sgravityfield. TheLageosorbit hasa

meansemimajoraxisof 12,271krn,andeccentricityof 0.0044,andaninclinationof 109.84° with

respecttotheEarth'sequator.Theorbitplanecompletesonerotationwith respecttothetrue-of-date

equinoxin 1050daysinaprogradesense,whiletheperigeecompletesonerevolutionwith respectto

theEarth'sequatorin 1680daysin aretrogradesense.Thesatellite'saltitudereducestheeffectsof

uncertaintiesin themodelsforthehighdegreeandorderportionof theEarth'sgravitationalfieldand

theeffectsof atmosphericdrag. In addition,thesatellitehasaberyllium-coppercoreto increaseits

mass(407kg) anda 60 cm diameter,thusgivingthesatellitea verysmallarea-to-massratioof

6.95x l0--4m2/kg.Thisfurtherreducestheeffectof difficult-to-modelsurfaceforcessuchasneutral

andchargedparticledrag,radiationpressure,andthermalforces.Theresultingorbit stabilitygive

theLageossatellitea projectedlifetimeof over500,000years.Significantperiodsassociatedwith

theLageosorbitareprovidedinTable1.

Table1. SignificantLageosOrbitCharacteristics

Parameter

Orbitalperiod
Nodeperiodwrtinertialspace
NodeperiodwrtSun
Perigeeperiodwrtinertialspace

Period(days)

O.1566(225minutes)
1050(prograde)
560(prograde)

1680(retrograde)
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THE SLR GROUND NETWORK AND DATA SET

In the in,eestigation described here, the University of Texas orbit analysis system, UTOPIA, was

used to obtain a dynamically consistent solution to 15.1 years of Lageos laser range data. The data

set spanned the period from May 7, 1976 to July 3, 1991, and included 561,708 normal points,

constructed from two- and three-minute averages of the laser range observations from 117 different

SLR sites. The single-shot ranging precision of the various systems varied from about a meter for

some systems in 1976 to better than 10 mm for many of the systems at the end of the solution

interval. The normal point precision is about an order of magnitude better. An important component

of the tracking system coordinates is the offset, or eccentricity, between the laser site and the

appropriate geodetic monument. These eccentricities are measured using ground surveying

techniques with accuracies better than 1 cm. The eccentricity file used by UTCSR for this study was

compared against a similar file maintained at the Goddard Spaceflight Center and indicated no

significant discrepancies [Sellars, 1989]. The nominal epoch station coordinates used for this

investigation were Lageos derived coordinates referred to as SSC(CSR)91L02. The solution

approach is described by Watkins [I990]. The nominal plate motion model was the no net rotation

absolute motion model AM0-2 of Minster and Jordan [1978]. The epoch for the plate motion was

1988.0.

As shown in Table 1, Lageos has a period of 225 minutes, providing 3-5 passes per day for most

locations on the Earth. However, most stations attempt to acquire ranges for only the passes in a

single 8-hour shift, which is usually scheduled during local nighttime. To reduce the computational

burden, average or normal points are formed from the full-rate data collected by the station. These ,

normal points are essentially average ranges over a selected duration, such as 2 or 3 minutes, and

have been demonstrated to retain the geophysically and geodetically useful information of the full-

rate data set [Smith et al., 1985; Tapley et al., 1985]. Normal points are used not only to relieve
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computationaleffort but alsoto reducethe randomor white noisecontentof the laserrange

measurements.Theprocedureaccomplishesthis by averaginga largenumberof raw ranges,and

thuswill noteliminatesystematicerrorswhichmayberelativelyconstantorslowlyvaryingoverthe

two-or three-minutenormalpointwindow.Theformationof thenormalpointsusedfor thisstudy

follow theHerstmonceuxrecommendationoutlinedat theFifth InternationalWorkshop(1984)on

LaserRangingInstrumentation.As Table2 indicates,thisapproachhasled to thesetof 561,708

normalpointswhichwereusedin thisstudy.Themeanprecisionfor thissetof 117siteswas7.3cm

whenaveragedovertheentirespan,althoughmanyoftherecentsiteshaveaverageprecisionsof less

than1cm.

DataWeighting

Thequalityandquantityof theLageosrangedatahasvariedwidelyduringthe 15yearsof the

mission.Thevariationin dataqualityrequiresthatacomplexweightingalgorithmbeappliedif the

bestestimatesof thesatelliteorbitandgeodeticparametersaretobeobtained.

Thedataqualityvariationcanbethoughtof asbeingof twotypes.Thefirsttypeis thegradual

increasein dataqualitywith timeasthelaserinstrumentationhasimproved.This is demonstrated

by Figure1,whichplotsthermsfit of normalpointsin 15-dayarcsduringthefirst 10yearsof the

mission,usingthe modelsdescribedin thenext sections.Theresultingcurvein Figure1 was

approximatedwithafour-partlinearmodelwiththefollowingnodepoints:

1976(MJD42905): 70cm

1979(MJD44162): 40cm

1983(MJD45578): 20cm

1986(MJD47000): 12cm

Theweightof eachnormalpointis linearlyinterpolatedbetweenthenodepointsandis constantat

thevalueof thelastnodepointfor timesgreaterthanthetimeof thelastnode.
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Thesecondtypeof variationin dataqualityis thevariationfrom stationto stationwithin the

networkdueto thevarietyof hardwaresystemsinuseatthetrackingstations.Thisinhomogeneity

is demonstratedbytheresultsinTable2. Thistableprovidesanestimateof theinternalprecisionof

eachstationin thenetwork(columntitledPrec.Est.),averagedoverall dataretainedin thesolution.

Thisvariationis modeledasa stationdependentnoiselevelwhichis addedin anrmssenseto the

linearweightingdescribedabove.Thiscorrectionwasusedonlyfor thosestationswhosenoiselevel

is substantiallyhigherthanthenetworkaverageat thetimeof operationof thesite. In addition,

recentlyoccupiedmobilesitesareassignedslightlyhighernoiselevelsto reflecterrorsin nominal

sitepositions.Forthisstudy,thesystemswereassignedtheincrementalnoiselevelsin centimeters

indicatedin Table2 (columntitled Inc. Sig.). Stationswith 0 in this columnreceiveonly the

weightingassignedthroughthetimedependentalgorithmdescribedabove.

Table2. SLRStationPerformance
May1976-August1991

Station No.of No.of Prec.Est Inc.Sig.
Passes Obs. (cm) cm

i 181 Pottsdam,Ger. 559 4048 9.1 30
1873 Simeiz,Uk. 82 590 7.3 100
1884 Riga,Lat. 121 794 6.9 100
1893 Katsively,Uk 41 304 4.6 100
1953 SantiagodeCuba,Cuba 106 532 8.4 100
7035 OtayMt.,USA 48 717 0.5 0
7046 BearLake,USA 45 651 3.6 10
7051 Quincy,USA 137 1271 6.0 0
7062 OtayMt.,USA 265 1958 2.9 0
7063 STALAS,GSFC,USA 446 4219 4.2 0
7065 GSFC,USA 3 19 8.3 0
7067 Bermuda 29 161 3.1 0
7068 GrandTurk,Bahamas 4 22 8.4 0
7080 McDonaldObs.,USA 929 11369 1.0 0
7082 BearLake,USA 117 843 4.1 0
7084 OwensVal.,USA 22 152 14.3 0
7085 Goldstone,USA 20 135 8.6 0
7086 McdonaldObs.,USA 1270 13197 2.3 0
7090 Yaragadee,Aust. 3661 45811 t.9 0
7091 HaystackObs.,USA 412 3860 5.5 0
7092 Kwajalein 55 497 9.2 0
7096 AmericanSamoa 124 953 6.7 0
7097 EasterIs.,Ch. I98 2398 1.2 10
7100 GSFC,USA 5 41 6.7 0
7101 GSFC,USA 9 67 7.2 0
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7102
7103
7104
7105
7109
7110
7112
7114
7115
7120
7121
7122
7123
7125
7130
7210
7220
7236
7265
7274
7288
7295
7400
7401
7403
7510
7512
7515
7517
7520
7525
7530
7540
7541
7543
7544
7545
7546
7550
7575
758O
7585
7587
7596
7597
7599
7602
7805
7810
7811
7831
7833
7834
7835
7837
7838

GSFC,USA
GSFC,USA
GSFC,USA
GSFC,USA
Quincy,USA
Mon.Peak,USA
Platteville,USA
OwensVal.,USA
Goldstone,USA
Maui,USA
Huahine,Fr.Poly.
Mazatlan,Mex.
Huahine,Fr.Poly.
GSFC,USA
GSFC,USA
Maui,USA
Mon.Peak,USA
Wuhan,PRC
Mojave,USA
Mon.Peak,USA
Mojave,USA
Richmond,USA
Santiago,Ch.
CerraTolola
Arequipa,Peru
Askites,Gr.
Rhodes,Gr.
Dionysos,Gr.
Roumeli,Gr.
Karitsa,Gr.
Xrisokellaria,Gr.
BarGiyyora,Is.
Matera,It.
Matera,It.
Noto,It.
Lampedusa,It.
Cagliari,It.
Medicina,It.
Bassovizza,It.
Diyarbakir,Tur.
Melengiclic,Tur.
Yozgat,Tur.
Yigilca,Tur.
Wettzell,Ger.
Wettzell,Ger.
Wettzell,Ger.
Tromso,Nor.
Metsahovi,Fin.
Zimmerwald,Switz.
Borowicz,Pol.
Helwan,Egy.
Kootwijk,Neth.
WettzelI,Get.
Grasse,Fr.
Shanghai,PRC
Simosato,Jap.

229
60
13

1995
2652
3129
624
373
379
368
262

1356
179
35
3O

2084
63
52
48
48

185
86
42

222
150
258
176
247
225
95

126
97
32
61
49

145
120
11
49
89
91
84
83
37
10
12
45

150
828
99

198
338

1470
2717
256

1343

1.5

2019
578
110

24343
38505
41504
6427
3316
3293
3460
2125
17573
2232
325
253

23249
511
678
438
384

2822
1029
339

3O08
2174
2589
1921
2969
2604
1052
I570
920
225
535
529

1577
1323

85
257

1183
1227
9O9

1102
262
75
77

405
320

10510
639

1794
2399

12809
41961
2251

13857

6.7
4.8
3.1
0.8
1.2
1.2
3.5
3.5
2.7
2.1
3.1
1.4
0.9
1.7
1.0
1.1
4.0
2.6
1.9
3.9
0.6
1.6
2.3
1.2
1.0
2.0
2.0
2.1
1.3
2.1
0.9
4.5
1.4
1.9
1.4
2.0
1.6
2.3
2.5
1.6
0.4
2.0
0.6
2.1
1.0
2.1
2.7

14.1
2.3
7.3
1.7

11.7
1.8
2.4
5.4
2.9

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

60
0
0

10
10
!0
10
10
I0
10
10
10
10
I0
30
10
10
I0
10
10
10
10
10
10
10
10
0
0
0

10
I00
10

100
30
3O
10
0

60
10



7839 Graz,Aus. 1098 12992 0.9 0
7840 GreenwichObs.,UK. 3364 37127 1.8 0
7843 OrroralVal.,Aust. 1535 15321 2.0 5
7853 OwensVal.,USA 105 1743 2.0 0
7882 CaboSanLucas,Mex. 54 641 0.6 0
7883 Ensenada,Mex. 35 273 0.6 0
7885 McdonaldObs.,USA 34 218 1.6 0
7886 Quincy,USA 107 989 1.7 0
7888 Mr. Hopkins,USA 30 231 2.5 0
7891 Flagstaff,USA 36 281 2.8 0
7892 Vernal,USA 66 507 4.9 0
7894 Yuma,USA 45 221 2.6 0
7896 Pasadena,USA 66 516 3.1 0
7899 GSFC,USA 28 177 4.2 0
7907 Arequipa,USA 4046 46849 14.9 30
7918 GSFC,USA 53 619 0.4 100
7919 GSFC,USA 6 42 4.9 100
7920 GSFC,USA 25 230 0.5 100
7921 Mt.Hopkins,USA 686 6739 33.0 50
7929 Natal,Braz. 353 2152 31.1 50
7939 Matera,It. 2242 32328 5.3 20
7940 Dionysos,Gr. 3 15 9.7 100
7943 OrroralVal.,Aust. 1381 14756 21.2 50
8833 Kootwijk,Neth. 106 1148 2.0 10
8834 Wettzell,Ger. 39 349 1.4 10

TOTALS 48456 561708 7.3

METHOD OF SOLUTION

Numerical Integration

The solution for the Lageos ephemeris, dynamic model parameters, and geodetic parameters was

obtained by a weighted least squares batch estimation procedure which requires the solution of the

differential equations governing the satellite's motion, as well as the state transition matrix for a

defined period of satellite motion [Tapley, 1973]. For short arc solutions, this can be accomplished

to a reasonable accuracy by numerically integrating the second order differential equations of the

orbital motion in the form (Cowell's method)

_= - r-_-j-3_ + 7(t, X'_) (1)

whereTrepresents the perturbing forces to the two body motion. For the longer arcs described in

this investigation, a modified Encke method was required to numerically integrate Eq. (I) [Lundberg
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et al., 1991].Thenumericalintegrationmethodfor boththestandardCowellandmodifiedEncke

approacheswasa Krogh-Shampine-Gordon14tnorder,fixed-stepintegratordescribedin Lundberg

[1985].Thestepsizeusedwas300seconds.

In UTOPIA,thedynamicalequationswhichgovernthemotionof Lageoswereexpressedin an

Earth-centered(non-rotating)cartesiancoordinateframe,definedby themeanequatorandequinox

of epoch2000.0(J2000.0).Thissystemis realizedthroughtheuseof theJPLDE-200planetary

ephemeris,the 1976InternationalAstronomicalUnion (IAU) precessionandthe 1980IAU Wahr

nutationmodel.Correctionsto theVLBI-determinedIAU precessionandnutationmodels[Herring,

1988]werealsoadopted.Theorientationof thetrackingstations(thebody-fixedframe)relativeto

thecelestialephemerispoleof theEarthareprovidedthroughtheuseof theEOP(CSR)91L02Earth

orientationseries[Eanesetal., 1991].

Long-andShort-Arc Solution Procedure

The determination of geophysical and geodetic parameters using Lageos laser range

measurements at UTCSR involves a combination of long- and short-arc techniques [Tapley et al.,

1985]. The long arc provides the starting point and is used primarily to study long-period

perturbations in the Lageos orbit. The short arcs are constructed from the residuals of the long-arc

orbit and form the basis for most geodetic work. A description of both techniques is provided in the

specific context of the solutions determined for this study.

Long-Arc Solution

Using the data set described in Table 2 and a complete force and measurement model, a single,

dynamically consistent trajectory was fit over the 15.1-year period from May 1976 through July

1991. The force and measurement models adhered largely to the IERS Standards, with the exception

of the use of the TEG-2 mean gravity field developed at UTCSR, and the modelling of a signifcantly
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morecompleteoceanand solid tide model,includingoceantide perturbationsfrom over 80

constituentsexpandedto degreeandorder20wherenecessary,andthirdordersolidtides[Tapleyet

al., 1991;Eaneset al., 1991;Casotto,1989].To achieveanaccuratesolutionoverthis extended

timeinterval,stringentdemandsmustbemetontheaccuracyof theforcemodelsandcomputational

software.Thenumericalintegrationprocessinvolvesover1.6million stepsin over35,000orbital

revolutions,equivalentcomputationallytoa 2700yearintegrationof theorbit of theMoon,amuch

moreconservativedynamicalsystem.

After convergingtheorbitthroughtheentiredataspanin thismanner,adjustingonlythesingle

setof Lageosinitial conditionsand15dayalongtrackaccelerations,therangeresidualrmswas

1.28meters.Theresidualsfromthelong-arcsolutionweremappedinto orbit elementsusingthe

UTCSRsoftwarepackageELPSOL.A spectralanalysiswascarriedout on the residualorbit

elementtime series,andcandidatesfor the sourcesof errorswere identifiedand addedto the

adjustedparameterlist onsubsequentiterationstoreducetherangeresidualrms.

Table3. Contributionsto 1.28 Meter Range

Residual RMS By Individual Orbit Element

Element Residual

rms (m)

Semimajor Axis

Eccentricity
Inclination

Node

V2(co+ m)
1½(co - m)

0.002

0.522

0.127

1.211

0.498

0.477

The dominant sources of error for each element shown in Table 3, were : semimajor axis - along-

track acceleration variations with periods shorter than 15 days; eccentricity - odd zonal harmonics

(constant + variability due to ocean tides and meteorological effects), and thermal surface effects

(solar Yarkovsky + asymmetric albedo of spacecraft); inclination - ocean tide error dominated by KI

and $2; node - even zonal harmonics, particularly the secular variation J2, and periodic variability at
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18.6yearsandannualperiods;periapse- oddzonalharmonicerror(constant+ variability),and

thermaleffects;along-track- variationsin along-track"drag"as in semimajoraxis. Thelinear

combinationsof periapselongitudeandmeananomalyareusedbecausetheyaremorewell suited

for nearcircularorbitssuchasthatof Lageos.

Thesecondstepin thelong-arcprocedureusesthe 1.28m orbit obtainedby estimatingonly a

smallsubsetof parametersto tunea setof forcemodelparametersin orderto reducetherange

residualrms.After adjustingtheparametersdescribedin Table4 (for estimatedoceantidessee

Table6),therangeresidualrmswasreducedto 28cm.It shouldbenotedthatsolarreflectivitywas

not adjustedasa sub-arcparameterin themannerof thealong-trackacceleration,sinceprevious

studiesat theCenterfor SpaceResearchhaveindicatedthat theaccuracyof theestimateof the

reflectivitydoesnotreachthe0.1%levelof thehypothesizedsolarconstantvariabilityunlessit is

adjustedin intervalsspanningseveralyears[WillsonandHudson,1988;Tapleyetal.,1989].Thisis

dueto theneedfor theshadowingfunctionto decorrelatethepowerfulreflectivityparameterfrom

otheradjustedparameters.

Table4. EstimatedParameterSummary
Parameter Frequency

Initialconditions
J2, J3

J2
Ocean tides

Solar reflectivity

Along-track acc.

Short-Arc Solutions

Once

Once

Once

Once
Once

15 days

The 28 cm residuals from the final long arc fit were dominated by small model errors in ocean

tide perturbations, including seasonal variability and thermal (Yarkovsky) forces [Eanes and

Watkins, 1991]. Discussions of tide model errors including errors due to omission, commission, and

to seasonal variability in the Lageos orbit are given by Eanes and Watkins [1991] and Casotto
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Table5. Contributionsto 0.28MeterRange
ResidualrmsbyIndividualOrbitElement

Element Residual
rms(m)

SemimajorAxis
Eccentricity
Inclination
Node
1/5(03+ m)
½(03- m)

0.001
0.271
0.066
0.126
0.259
0.232

[1989].Thermscontributionof errorsin eachorbitelementis presentedin Table5. Theseerrors,

becauseof boththemagnitudeandspectrum,canaliasintothesolutionsfor thegeodeticparameters.

Theeffectsof longperiodforcemodelerrorsmustberemovedfromtheresidualsbeforeanaccurate

solutionfor geodeticparameterscanbeobtained.Theshort-arcsolutionisdesignedtoachievethis

result,sincethelongperioderrorcanbeaccomodatedin theestimatefor theinitial conditionsin a

mannersimilarto theclassicalvariationof parametersapproachusedin celestialmechanics.The

lengthof theshortarcsweredependentonthedatadensityandvariedfrom I5 to 3 daysaccording

tO:

1976 (MID 42905) - 1979 (MID 44162): 15 day

1979 (MJD 44162) - 1983 (MID 45578): 6 day

1983 (MID 45578) - 1989 (MID 47585): 3 day

These cutoffs for the arc lengths were chosen to make the a posteriori uncertainties on the estimated

orbit parameters more uniform over the data span [Watkins et al., 1989]. The Earth orientation

parameters, station coordinates and other parameters of primary geodetic interest were adjusted

simultaneously with the short-arc adjustments.

DYNAMICAL MODEL INVESTIGATIONS

As mentioned previously, the long arc technique is ideally suited to studying the accuracy of the

dynamic models used to propagate the satellite orbit. If the dynamic model used to compute the
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long-arcorbit is imperfect, the tracking data cannot be fit to the measurement precision, and

systematic range residuals will result. By fitting the residuals with piecewise constant adjustments to

the classical orbital elements over successive time intervals that are short with respect to the length

of the long arc, a time series of the error in each orbital element is obtained. Spectral analysis of the

time series provides a means of identifying what parts of the dynamical model need to be adjusted.

Gravitational Forces

Secular and Tidal Variations

Figure 2 shows an example of the above described process. The top panel shows the Lageos

inclination residuals from May 1976 to July 1991 as computed using the nominal dynamical model

with ocean tides fixed to the values from Schwiderski [1980]. Because errors in the dynamical

model drive the derivatives of the orbital elements, a more direct comparison of the size of the model

errors is obtained by analyzing the derivative of the orbital element time series. Figure 2c shows the

derivative of the inclination residuals, the observed inclination excitations, and Figure 2d shows the

power spectrum of these excitations. Peaks in the power spectrum at periods of 1050 days, 280 days,

and 14.03 days are marked and labeled K 1, $2 and M2. These peaks show that there are errors in the

nominal ocean tide model for these constituents. In particular this inclination signal points to the

need to adjust the prograde degree 2 order 1 harmonic of the K1 tide and the prograde degree 2 order

2 harmonics of the $2 and M2 tides.

Figure 2b shows the inclination residuals after these parameters (and others) have been adjusted

using the Lageos data. The systematic signals are significantly reduced. The RMS of the inclination

residuals about the best fitting line is 10 mas in Figure 2a and is 3 mas in Figure 2b. The slope of the

remaining inclination residuals in Figure 2b is 0.3 mas/yr. The remaining signals, although

substantially smaller, still indicate that further model improvement is possible.
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Analysisof theotherorbitalelementresidualtimeseriesshowthatmanyotherperiodicsignals

existthatcanberemovedby adjustingtideparameters.Tables6,7, and8 showtheresultsof the

adjustmentof thesetideparameters.Thephasedefinitionin thesetablesis adoptedfrom thatof

Schwiderski[1980]asgivenin theIERSStandards[McCarthyetal.,1989].

The Sa tide, although not included in the 11 constituents computed by Schwiderski, can,

nevertheless, be estimated from the other long period tides by assuming that the admittance of the

ocean's response varies smoothly with frequency [Eanes et al., 1983; Christodoulidis et al., 1985].

Since Sa is a small term in the tidal potential the resulting estimate for the Sa tide parameters are also

small. The Lageos values, however, are not small and clearly indicate that non-tidal sources of

dynamical model error are present.

Table 6. Long Period Ocean Tide Solutions

C_o e_o C_o _o Source
cm deg cm deg

&

Ssa

Mm

2.17 23 11.4 282

0.17 264 0.01 46

2.83 39 1.98 245

1.81 267 1.98 81

1.24 222 0.06 2

1.59 253 0.78 69

1.29 262 0.53 162

1.06 259 0.06 94

1.42 246

My 2.86 243 2.61 281
1.70 252 0.19 148

2.84 242

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [ 1990]

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [1990]

In the case of C_0, the estimate of the 2-cm Sa "ocean tide" is actually the result of seasonal

redistribution of mass in the atmosphere and hydrosphere [Gutierrez and Wilson, 1987; Cheng et al.,

1989; Chao and Au, 1991]. The 2-cm value for C_0 is equivalent to an annual variation of J2 with
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Table7. DiurnalOceanTideSolutions

C_l e_l C_1 _I C_l E_I Source
cm deg cm deg cm deg

al

Ol

P1

Sl

K1

0.72 314 0.08 297 0.48 281

0.54 314 0.31 107 0.29 289

0.72 295 - - 0.87 264

2.46 308 0.91 64 1.77 301

2.42 314 1.31 84 1.43 276

2.66 327 1.05 63 2.25 296

0.85 323 0.47 48 - -

0.90 314 0.30 40 0.63 258

0.99 331 0.86 1 0.78 267

0.14 328 1.12 232 - -

0.02 315 0.01 37 0.01 256

2.47 326 1.31 31 - -

2.81 315 0.89 34 1.91 254

2.68 325 1.41 347 2.59 254

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [ 1990]

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)
Schwiderski [1980]

Lageos (this paper)
Schwiderski [1980]

Starlette, Cheng et al. [1990]

an amplitude of 24x 10-11. The Ssa tide results also differ substantially from Schwiderski and are

due to a semiannual variation of the mass distribution in the atmosphere and oceans. On the other

hand, the 11.4 cm amplitude of Sa, represented by the value for C_0, is too large to be explained by

mass transfer in the atmosphere. Since similar analysis using Starlette [Cheng et al., 1989] does not

observe the same large signal, this anomaly indicates that there is some nongravitational term that

needs correction in the Lageos dynamical model. In addition to the anomalous value of Sa C_0, the

value of $1 C]I obtained using the Lageos data is also large. These two anomalies are probably

related and are discussed below.

The Lageos and Starlette results for Mf C_o are both consistently larger than the Schwiderski

value and show the same phase. The likely explanation is that both estimates are aliased by error in

the nominal model for the fortnightly variation of UT1 [Yoder et al., 1981]. For Lageos, a 1-cm

1.13



Table8. Semi-diumalOceanTideSolutions

C_2 c_2 C_2 c_2 C_2 c_2 Source
cm deg cm deg cm deg

N2

M2

$2

K2

0.72 325 0.38 205 0.29 132

0.65 322 0.11 172 0.21 142

0.92 329 - 0.13 148

3.30 321.4 0.27 155 1.00 135

2.96 310.6 0.36 169 1.00 125

3.22 319.3 0.12 161 1.I5 121

0.84 306 0.38 214

0.93 314 0.26 202 0.37 103

0.83 302 0.23 192 0.32 89

0.31 320 0.19 244 -

0.26 315 0.09 195 0.11 104

0.29 316 0.08 243 0.10 97

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et aI. [1990]

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et al. [1990]

Lageos (this paper)

Schwiderski [1980]

Starlette, Cheng et al. [1990]

change in the amplitude of My C_o corresponds to 0.02 ms or less than 2 percent of the total

variation of UT1R-UT1. The causes of the large estimates of Mm C_O and Mf C_0 are not known at

this time.

In the diurnal tidal band, the results shown in Table 7 show that the satellite derived tide

coefficients generally agree well with the oceanographic estimates from Schwiderski. The largest

exception is the previously mentioned anomaly in Sl C_1. The 0.4 cm correction in the Kl C_l

coefficient is the source of the approximately 10 mas term in the Lageos inclination residuals shown

in Figure 2. In terms of in-phase and out-of-phase parts of the K1 tide, the Lageos result agrees with

Schwiderski for the out-of-phase part (C{l cos c_1), but is 0.6 cm smaller for the in-phase part

(-C_l sin c_1). The effect of changing the Earth's free core nutation (FCN) period from 460 days to

430 days as is indicated by analysis of nutation observations [Herring et al., 1991] should reduce the

effective Kl coefficient by 0.34 cm [Zhu et al., 1991], so the observed Lageos value is in better

agreement with the smaller FCN period. Uncertainties in the actual ocean tide part of the K 1 signal
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limits theusefulnessof amorequantitativeassessmentof theFCNperioddeducedfromtheLageos

orbit analysis.TheStarletteresultfromChenget al. [1990]is alsomoreconsistentwith thelower

FCNperiod.

In thesemi-diurnaltideresultsgivenin Table8,twointerestingpointscanbenoted.First,both

the Lageosand Starletteanalysesconfirmthat theSchwiderskivaluefor M 2 degree 2 order 2

amplitude and phase requires a substantial correction. The out-of-phase part of this tide is

C_2 cos _2 and is the largest contributor to the tidal deceleration of the Moon's mean motion

[Cheng et al., 1992]. The contribution to the Moon's h based upon the Lageos M2 result is

-20.35 arcsec century -2, while that due to the Starlette result is -19.27. The Schwiderski value gives

-15.15. Results in Marsh et al. [1990] derived from a combination of satellites agree well with the

Lageos value, and the higher energy disspation obtained by all of the satellite results matches the

observed secular deceleration results from lunar laser ranging [Dickey et al., 1990] much better than

the Schwiderski value. Also, both the Lageos and Starlette results for $2 C_2 and _2 include the

contribution of the atmosphere as discussed in Chapman and Lindzen [1970]; however, the

difference between these results and those of Schwiderski are substantially smaller than the predicted

atmospheric effect.

Although the adjustment of ocean tide parameters can remove many signals from the Lageos

orbital element residuals, this parameterization can not handle the non-periodic variations of the low

degree Stokes coefficients that are caused by non-tidal mass transfer in the atmosphere and oceans.

Nor can they completely remove the effects of mismodeled nongravitational effects on Lageos.

The analysis of the residuals in the ascending node is shown in Figure 3. The large curvature of

the residuals using the nominal dynamical model in Figure 3a is caused by a combination of

unmodeled secular change in J2 and an 18.6-year period variation due to uncertainties in the

response on the inelastic Earth to long period tidal forces. The separation of these two effects, even
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usingmorethan15yearsof data, is still problematical due to extreme sensitivity of the results to

unmodeled J2 variability at frequencies of less than 0.2 cycles per year [Eanes and Watkins, 1991].

Leaving the issue of long period and secular variability of J2 for further analysis, the node

signals at frequencies greater that 0.2 cycles per year can be studied. Figure 3b shows the derivative

of the node residuals of Figure 3a. Signals in this derivative, which will be referred to as the node

excitation, are caused primarily by variations in J2 and J4 [Cheng et al., 1989]. Figure 3c shows the

power spectrum of the time series of node excitations. The two largest peaks in the spectrum are

labeled Sa and Ssa and represent annual and semiannual variability respectively. These anomalously

large peaks are the source of the large adjustments of the degree 2 order 0 long period ocean tide

coefficients discussed above. Although the semiannual peak is adequately removed by adjusting the

Ssa ocean tide, many attempts at removing all of the annual power by adjusting the Sa tide fall short

of this goal. The reason for this failure can be understood by the results, shown in Figures 3d and 3e,

of a complex demodulation of the node excitation time series at the annual frequency followed by a

bandpass filter. The results show that both the amplitude and the phase of the annual variation of J2

show substantial interannual variability. The amplitude shows variations of + 50 percent about the

mean value of 100 mas year -1 and the phase changes by + 30 degrees or about 1 month. The phase

definition of Figure 3e is different from that of Table 3 by 93 degrees. A node excitation of

100 mas year -1 corresponds to an equivalent ocean tide amplitude of 1.98 cm or a J2 variation of

amplitude 24 x 10-11.

The stochastic nature of the observed node excitation precludes the possibility of solving for

parameters in a deterministic model of the J2 variability. Future studies of the Lageos results to the

predictions using meteorological data must go beyond comparisons of the mean annual and

semiannual terms to test the coherence of the two time series at all frequencies. Preliminary results

indicate that substantial coherence exists in the frequency range from 1 to 4 cycles per year
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[Gutierrezetal.,1991;EanesandWatldns,1991].

The most puzzling feature of the orbital element residuals of the Lageos long arc is the large

signal in eccentricity (e) and argument of perigee (co). These two elements are closely related and

for a nearly circular orbit a change of variables to the nonsingular pair, e cos co and e sin co, simplifies

the analysis [Yoder et al., 1983; Cheng et al., I989]. The fight-hand side of the differential equation

for the complex quantity P = e cos c0-i e sin co is referred to as the eccentricity vector excitation,

hup. Variability in the odd zonal harmonics cause variations with the same spectrum in the real part

of h_p. Errors in the odd degree diurnal and semi-diurnal ocean tide coefficients of order 1 and 2

respectively cause variations in both the real and imaginary parts of uLp.

Figures 4a and 4b show the real and imaginary parts of _t'p using the nominal dynamical model

of the long arc. The real part of _e is dominated by an annual variation while the imaginary part is

dominated by a variation with a period of 560 days, period of the S I tide perturbation and the

interval of time required for one rotation of the Lageos orbital plane with respect to the Sun. These

two features explain the anomalous estimates of the Sa C_O and S1 C_l tide coefficients in Tables 3

and 4. But as mentioned above, the amplitudes of these terms are too large to be explained by tide

effects alone, and Starlette analyses do not agree with these large values. This leads to the

conclusion that this anomaly must be the result of a nongravitational acceleration of unknown origin

acting on the Lageos orbit. The thermal imbalance and asymmetric albedo models (discussed later)

that explain most of the observed Lageos drag-like acceleration and inclination slope do not seem to

be adequate to remove the anomalous motion of the eccentricity vector. Until more is known about

the source of the acceleration we must restrict ourselves to an empirical study which focuses on the

form of the perturbations it causes.

More insight into the nature of these perturbations is achieved by the complex demodulation of

the real part of hup shown in Figure 4c and 4d. The amplitude of the annual term has a mean of
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70masyear-l correspondingto anequivalentoceantideof 11cm. From 1978through1987,this

amplitudeseemsto decreaseslightlyandshowsa modulationperiodof 3 yearswhichis thebeat

periodbetweenthe$1 and Sa periods and which physically corresponds to the period of variation of

the inclination of the Lageos node with respect to the ecliptic or the motion of the Lageos node with

respect to the equinox (the K1 period). In late 1988, a very large anomaly began which resulted in

the amplitude tripling to more than 200 mas year -1 during 1989. More recent analysis indicates that

the amplitude also reached this same level in 1991. The spectrum of We indicates that the 560 day

term in the imaginary part of hup also exists in the real part, and together they are equivalent to a

prograde oscillation in Wp with an amplitude of 40 mas year -l . Radial or transverse accelerations in

near resonance with the orbital motion of Lageos are required to explain these observed trends. The

required amplitude of the once per revolution acceleration has a peak value of 200 x 10-12 m s-2 if it

is in the transverse direction and twice this size if it is radial. This is about 1 percent as large as the

direct solar radiation acceleration on Lageos. The eccentricity perturbations during the most

anomalous year, 1989, reach 0.3 x 10-6, corresponding to error in the radial component of the Lageos

position of more than 3 meters. Note that short arc fits to the Lageos data will accommodate this

effect into the adjustment of the orbit initial conditions and lead to a much reduced signal in the

range residuals.

General Relativity

One of the factors to be considered in the analysis of precise laser ranging data is the inclusion of

general relativity in the data reduction procedure. The relativistic treatment of the near- Earth

satellite orbit determination problem involves relativistic equations of motion, corrections to the

measurement model, and time transformations. The problem can be formulated in a solar system

barycentric reference frame or a geocentric reference frame. As a result of the generalized principle

of equivalence, the main relativistic effects on a near-Earth satellite should be due only to the
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Schwarzschildfieldof theEarthitself [AshbyandBertotti,1984].Analysisof laserrangedatato

Lageosinbothreferenceframeshasverifiedthatthegeocentricframeis adequatefor Earthsatellite

applications[Rieset al., 1988;Huanget al., 1990].The modelingfor thebarycentricframeis

describedin Martinet al. [1985],butRiesetal. [1988]usedLageosrangedatato demonstratethat

anadditionalcorrectionto therelativisticbarycentricequationsof motionis necessaryto properly

modeltheoblatenessoftheEarth'sgravitationalfield.

Thelargestdynamicaleffectof generalrelativityonasatelliteorbitis thewell-knownprecession

of perigee.ForLageos,theperigeeprecessionis approximately9 mas/day,aneffecteasilyobserved

in theLageosperigeeresidualsif notmodeled.Relativitytheoryalsopredictsseveralsmalleffects,

includingachangein themeanmotionof thesatelliteandaprecessionof thelongitudeof thenode

dueto theangularmomentumof therotatingEarth,theLense-Thirringeffect[LenseandThirring,

1918].In addition,thereisaprecessionof theorbitplanedueto theeffectof geodesic(ordeSitter)

precession[deSitter,1916].Thisdynamicaleffectis notdueto theEarth'smass,but ratherto the

motionof theEarththroughtheSun'sgravitationalfield. It is theresultof thechoiceof ageocentric

referenceframewhichisnon-rotatingwithrespecttothebarycentricframeinsteadof a truly inertial

geocentric reference frame, since the latter is difficult to realize in practice [Huang et al., 1990].

Observation of these small precessions by means of the analysis of the Lageos inclination and node

residuals is presently not possible because of the uncertainties in the even zonal harmonics of the

Earth's gravitational field. It has been proposed, however, that the effects of the uncertainties in the

even zonals can be eliminated by placing a Lageos-type satellite in an orbit identical to Lageos but

with an inclination supplementary to Lageos [Ciufolini, 1986, 1989, Tapley et al., 1989].

The Earth's Gravitational Coefficient

The value of the gravitational coefficient of the Earth (GM) is an important parameter in the

determination of the scale of the coordinate system realized by satellite observations [Zielinski,
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1981].Thebestvaluesof GM are generally accepted as those determined by observing the influence

of this parameter on the motion of near-Earth satellites, and the satellite best suited for this purpose

is the Lageos satellite. Lageos was designed to minimize the effects of nongravitational forces, and

the gravitational effects of all but the longest wavelength components of the Earth's geopotential are

greatly attenuated because of its high altitude. Thus the accuracy of the modeling of the forces on

the Lageos satellite is more accurate than for any other satellite. In addition, the laser ranging

measurements to Lageos are of very high accuracy.

In 1985, a solution for GM using only laser ranging to Lageos produced a value of

398600.434+0.002km3/sec 2 [Smith et al., 1985]. At the same time, a value for GM equal to

398600.440 km3/sec 2 was determined from eight years of laser ranging to Lageos by UTCSR

[Tapley et al., 1985]. The uncertainty in the UTCSR estimate was reported subsequently as

0.002 km3/sec 2 [Chovitz, 1987]. More recently, UTCSR reported a solution for GM obtained from a

3-year fit to Lageos laser ranging, and also from a multi-satellite solution, to be

398600.4405_+0.001 km3/sec 2 [Pies et al., 1989]. The relativistic effects appropriate to the

geocentric frame were modeled, where the coordinate time is equivalent to the current definition of

Terrestrial Dynamical Time (TDT) [Huang et al., 1990].

In the initial determination, the Lageos laser range data were processed with a small but

significant error in one of the range corrections. Optical tests on the Lageos-II satellite, which was

built by the Agenzia Spatiale Italiana (ASI) to be a replica of the Lageos satellite, prompted a review

of the tests conducted on Lageos. It was discovered that the value for the correction for the offset

between the Lageos center-of-mass and the effective reflecting surface should be about 251 mm

[Fitzmaurice et al., 1977] rather than the adopted 240 mm value [McCarthy, 1989]. In a new

UTCSR determination of GM using the corrected center-of-mass offset, a value of

398600.4415 km3/sec 2 in TDT units has been obtained, with an estimated uncertainty (l-G) of
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0.0008km3/sec2 [Riesetal.,1992].

While the directeffectsof generalrelativity weretakeninto accountin the dataanalyses

describedabove,thereis anindirecteffecton theunitsbeingusedthatmustbeconsidered.The

primaryeffectof generalrelativityontimeis thatcoordinatetimein differentreferenceframesmay

runat differentrates.BecausetheInternationalAstronomicalUnion(IAU) definitionof thetime

coordinateof thesolarsystembarycentricreferencesystemrequiresthatonly periodicdifferences

exist betweenBarycentricDynamicalTime (TDB) and TDT, the spatialcoordinatesin the

barycentricframe haveeffectivelybeenrescaled[Misner, 1982;Hellings, 1986;Guinotand

Seidelmann,1988]. Thus the valueof GM wouldbe 398600.4418km3/sec2 in SI units and

398600.4356km3/sec2 in TDB units. Recommendationshavebeenmadeto modify the IAU

definitionfor coordinatetimesto eliminatetherescaling,whichwouldresultin theunitsof length

remainingSIunitsinall referenceframes[Guinot,1991].

Nongravitational Forces

The dominant nongravitational force on Lageos is radiation pressure. The radiation may come

directly from the Sun, it may be sunlight reflected by the Earth, or it may be infrared radiation that is

emitted by the Earth. Temperature imbalances on the satellite itself can lead to 'photon thrusts'.

Finally, there is expected to be some atmospheric drag even at the altitude of Lageos. Other forces,

such as perturbations by the Earth's magnetic field, interplanetary dust, the solar wind, or Poynting-

Robertson drag, are not expected to have significant effects on the Lageos orbit [Rubincam, 1982;

Ciufolini, 1989].

Solar and Earth Radiation Pressure

Although the shape of the Lageos satellite is simple, modelling the effect of radiation pressure

directly from the Sun is not trivial. A conical shadow model (umbra and penumbra) for the Earth
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andMoonis generallyused,but thenumericalintegrationstep-sizeisusuallymuchlargerthanthe

durationof partialshadowing,andthe effectis essentiallya discontinuityin the solarradiation

pressureforce. Implementationof a procedureto moreaccuratelyaccountfor the effect of

shadowingis underway[Feulner,1990].Whilesomeorbit errormaybeattributableto thecurrent

methodof integratingacrosstheshadowboundary,experimentsvaryingintegratorstep-sizeand

shadowradiusindicatethatthisis notthecauseof theanomalousalong-trackaccelerationsobserved

in theLageosorbit.

It is unclearhowmuchthemodellingof theeffectsof Earthradiationpressurehavebenefitted

theLageoslongarcfits. Theeffectsaresignificant,andit hasbeenpossibleto estimatetheaverage

reflectivityof theEarthfrom a Lageoslong-arc,but it is likely thatthe orbitaleffectscouldbe

absorbedto somedegreeby otherdynamicalmodelparameters.TheUTCSRmodelfor Earth

radiationpressurenumericallyintegratestheheatanddiffuselyreflectedsunlightfrom thevisible

diskof theEarth[Knockeet al., 1988].Theaverageandseasonalvariationsin theEarth'salbedo

andinfraredemissionare includedin a second-degreezonalrepresentation.The temporaland

geographicvariationsof theEarth'salbedoareexpectedto departconsiderablyfrom the zonal

averages,so,atbest,theEarthradiationpressuremodelonlyrepresentsthelongperiodeffects.It is

possiblethatsomeof theshortperiodvariationsin theLageosalong-trackaccelerationaredueto

sunlightreflecteddiffuselyandspecularlybytheEarth[Anselmoetal.,1983].

SurfaceForcesandtheLageosSpin Vector

After subtracting most of the known forces acting on the Lageos satellite, there still remained a

significant along-track acceleration which reduces the semi-major axis by approximately 1 mm per

day. The mean values of the anomalous acceleration (or drag) determined every 15 days by UTCSR

for the first 14.1 years of the previously discussed data set are plotted in Figure 5. The mean of the

acceleration over the entire arc is about 3.5 picometer sec -2 with fluctuations that are sometimes as
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largeasthemean.Thelargestvariations(spikes)occurwhenLageosis experiencingeclipsingof

the Sun by the Earth, although every eclipsing interval does not necessarily generate a spike. Thus

both the mean and the variations required explanation.

Earth Yarkovsky

A thermal drag model, a variant of the Yarkovsky effect, has been proposed by Rubincam [1987,

1988] which is able to account for much of the observed average along-track acceleration. The

infrared radiation from the Earth is absorbed by the laser retroreflectors, and, because Lageos is

spinning rapidly, the heat distribution is uniform longi(udinally but not latitudinally. This creates a

temperature imbalance between the Lageos northern and southern hemispheres, generating a thrust

along the spin axis as the heat is re-radiated. The proposed thermal drag model accounts for about

70% of the observed drag, and the remainder most likely consists of a combination of neutral particle

drag and charged particle drag [Rubincam, 1990]. This model also predicts periodic variations about

the mean with frequencies of once and twice per node revolution of the Lageos orbit (1050 and 525

day periods).

The effect of thermal drag due to Earth heating was simulated for the first 12.4 years of the

i

Lageos mission. The 15-day averages of the accelerations generated by the nominal Rubincam

[1988] model, augmented by 1 picometersec -2 to account for neutral and charged particle drag,

compared well with the observed accelerations if the spikes were ignored. It was noted, however,

that the modeled drag diverged from the observed drag in the last part of the 12.4 year arc in both

amplitude and phase The deviation appeared to suggest that the spin axis of Lageos is evolving from

its original orientation (where the agreement between the nominal model and observed drag is good)

and becoming aligned with the Earth's poles. A similar conclusion is reached by Rubincam [1990].

Rubincam [1987] suggested that the spin axis of the Lageos satellite should eventually align itself

with the Earth's spin axis. This has been confirmed by Bertotti and Iess [1991], who have analyzed
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the effectof gravitationalandmagnetictorqueson the satelliteas the eddycurrentdissipation

reducesthespinrate. In theUTCSRmodel,a modelfor thespinaxisevolutionwasdetermined

empiricallysothatthethermaldragfitstheobserveddragbetter.In Figure6, it canbeseenthatthe

modifiedmodelis ableto maintaingoodagreementin amplitudeandphaseof theperiodicvariation

throughoutthe12.4yeararc.A fewdirectmeasurementsof theactualLageosspinvectorareclearly

needed,sincethiseffect,andtheeffectsdescribedbelow,dependstronglyontheorientationof the

spinaxis.

Examinationof theorbitinclinationresidualsprovideadditionalevidencesupportingthethermal

dragmodel.In theUTCSRLageoslongarcswherethethermaldragwasnotmodeled,theresidual

errorsin theorbit inclinationhaveexhibiteda slopeof 1.3to 1.5masyear-l . Theslopein the

Lageosinclinationresidualshadbeenaconcern,sincethereseemedto benoreasonableforcewhich

couldgeneratethisparticularsignal.Theeffectof aco-rotatingatmosphereat Lageosaltitudewas

considered,butit wasfoundthatevenif oneassumedthat100%of thedragwasatmosphericdrag,a

co-rotatingatmospherecouldaccountfor lessthan10%of the inclinationslope.By incorporating

the 'EarthYarkovsky'modelin thelatestlongarc,theinclinationslopeis only0.3masyear-_. It is

convincingto notethatthethermaldragmodelis ableto explainmuchof theaveragedrag,the

variationat the 1050and 525 dayperiods,andmostof the peculiarinclinationslope. If the

magnitudeof thethermaldragforcewasincreasedto about90%of theobserveddrag,thenthe

remaininginclinationslopewouldbeexplainedalso.Anyotherexplanationfor theinclinationslope

isstill unknown.

SolarYarkovsky

A similarthermalthrustmechanism,dueto heatingby thesun,hasbeenproposedto accountfor

at leastpartof the largespikesthatoccuronlyduringeclipseseasons[Rubincam,1982;Slabinski,

1988;Afonsoetal.,1989;Scharrooetal., 1991;Riesetal., 1991].Sincethespinaxisorientationis
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essentiallyfixedwith respect to the Sun during an orbit, the hemisphere of the Lageos satellite which

is experiencing summer (tilted towards the sun) will be warmer than the opposite hemisphere at

every point in the orbit. Ignoring the Earth's heat and the effect of shadowing, this temperature

difference will be essentially constant, and there is no significant net effect on the orbit. During

shadowing, however, the solar thermal force does not average out, and there is a net along-track

acceleration.

A model for this effect was included in the force model for Lageos, and the estimated drag was

compared to the observed drag. The maximum magnitude of the 'Solar Yarkovsky' acceleration

(80picometersec -1) was empirically chosen to give peaks with amplitudes comparable to the

observed drag. Afonso et al. [1989] and Scharroo et al. [1991] independently analyzed the expected

surface temperatures and arrived at accelerations with similar magnitudes. The spin axis orientation

in the UTCSR model was based on the modified spin axis model when calculating the 'season' for

each hemisphere. Unfortunately, it has not been possible to choose a set of parameters for this

model which could predict the correct series of peaks.

Asymmetric Refleetivity

An additional mechanism is proposed that, when combined with the Solar Yarkovsky effect,

appears to account for the spikes observed during the eclipse seasons. If it is assumed that the two

halves of the satellite do not have the same effective reflectivity, then there will be an asymmetry in

the solar radiation pressure on the satellite that, averaged over the spin period, will be along the

direction of the spin vector. Like the solar Yarkovsky effect, there is no significant orbital effect

except during eclipse seasons. The cause of the reflective asymmetry is not known. Scharroo et al.

[1991] speculates that the two halves of the satellite may have been finished differently and finds that

the northem hemisphere of Lageos need only be 1/70th more specular than the southern one. Ries et

al. [1991] suggests that the non-symmetrical distribution of the infrared comer-cubes may be the
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cause.Therearethreeinfraredcubesin the southernhemisphereandonly onein thenorthern

hemisphere,andsincetheyappearopaqueat opticalwavelengths,thenorthernhemisphereis likely

to be more reflectivethan the southernhemisphere.Whateverthe sourceof the asymmetry,

augmentingthethermalforceswithanimbalancein thereflectivityleadsto amodelthatis capable

of generatingtheaccelerationssimilarto thoseobservedon theLageossatelliteoverthefirst 12.4

yearsasshownin Figure7. Theagreement,however,is still notperfect,whichillustratesthatthe

modelsarestill deficientinsomerespects.

Lageos Spin Vector

As the Lageos spin vector evolves with time, the models described above may become less

reliable. Analysis of the along-track accelerations estimated in the latest Lageos long-arc, which

incorporated the UTCSR surface force models described above, indicates that the agreement after the

first twelve years is degrading. It is critical for the modeling of these surface forces that

measurements of the spin axis orientation are obtained. Eventually, however, the spin rate will slow

enough to result in chaotic behavior. When this occurs, it is not clear whether the thermal forces will

average out and thus be attenuated, or become more significant and more difficult to model.

DEFINITION OF THE TERRESTRIAL REFERENCE FRAME

Using the short arc adjustments as discussed earlier enables not only an improved fit to the laser

ranges as measured by range residual rms, but also allows a frequency domain separation of orbit

error from kinematic effects in the residuals, namely those due to the positions of the ground

tracking sites. These sites, being tied to the surface of the Earth, are forced to have a diurnal

variation in the inertial frame. In the satellite frame, the variation differs from once per revolution

by one cycle per sidereal day a signal which is easily detectable and separable from other effects.

The most significant remaining orbit error at this frequency is due to error in the order 1 geopotential
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coefficients,but the effect is considerablysmallerthanthat of thekinematicsignalof the site

positionerrorsatthefewmillimeterlevelwhenaveragedovermanyrevolutions.

Therigidrotationsof thetrackingnetwork,thatis,thatpartof thesitemotionscommonto all the

sitesin rotation,are,bydefinition,polarmotionandEarthrotation,collectivelyreferredto asEarth

orientationparameters(EOP).Clearly,if boththecompletetrackingnetworkandall EOP'sare

adjustedsimultaneously,asingularityresults,andthearbitraryorientationof thenetworkaliasesinto

the EOP's. This problemis solvedprimarily by adjustingthe networkpositionsonceover a

relativelylongspanof timewhileadjustingtheEOP'sfrequently,suchasonceperday.Underthese

restrictions,only themeanvaluesof theEOPseriesareinseparablefrom the orientationof the

network.This lastsingularityis generallyremovedby theapplicationof oneof severaltypesof

constraints,includingthefixingof specificfiducialsite(s),or thefixing of EOP'sononereference

day [Smithet al., 1991;Robertsonet al., 1990].An alternativemethodis to applyananalytic

constraintequationthatforcesthe"netrotation"of thetrackingnetworkadjustmentswith respectto

a nominalsetto bezero,andtheyarethusabsorbedby theEOPseries[BenderandGoad,1979].

Suchaconstraintallowscontinuityof thecombinedtrackingnetworkandEOPseries,referredto as

theterrestrialreferenceframe(TRF),overtimeasmoredatafromadditionalsitesisacquired.The

implementationof this methodis understudyat UTCSR,althoughfor the present,an ad hoc

realizationof thisapproachis usedby constrainingthrougha priori covarianceboththeEOPand

trackingsites.Thiscovarianceis chosento besufficientlylooseto allowshortperiodvariationin

theEOP'swithoutallowinglong-termvariationsordrift. Fortheresultspresentedin thispaper,the

aprioriuncertaintyoneachsitecoordinatewas1meter,10masonx and y pole position, and 0.7 ms

on UTI. A priori correlations were set to zero. By not fixing any single site, the terrestrial reference

frame is freed from the vagaries, in either data quality or quantity, of a particular site.
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Theestimationof UT1usingSLR,oranysatellitetechnique,iscomplicatedbythefactthatlong

periodmodelingof themotionof the longitudeof theascendingnodeof theorbit(s)is at present

impossibledueto the stochasticvariationin the massdistributionof the atmosphere,andto

unmodelledsurfaceforces.Therelativesizeof theseperturbationsdependuponthasatellitedesign

and orbit characteristics.For Lageos,the variability in zonal massdistributionis the more

significant.Thus,UTCSRcurrentlyproducesUT1 estimateswhichareconstrainedto a VLBI

solutionat longperiods,but whichareincreasingindependentasthe frequencyincreases.This

techniquewasfirstdescribedin Robertsonetal.[1983],usingaGaussianfilterwithfull widthathalf

maximumof 90 days,and yieldedrms agreementof 0.7 ms. By contrast,usingan improved

Vondraksmoothingtechniquetying to JPLSPACE90[Grosset al., 1991],andgreatlyimproved

observationsandanalysesfrombothtechniques,thermsagreementin 1990waslessthan0.07ms

[IERSAnn.Rep.,1990].

Inclusionof Site Velocities

When the span of observations becomes long enough, site velocities may need to be estimated,

particularly for sites in deforming regions where the a priori plate model may not be accurate. The

inclusion in the adjusted parameter set of site velocities adds an additional singularity to the above

discussion, namely that between the mean slope in the EOP's and the net rotation rate derived from

the combined velocities of the sites in the TRF. This is resolved in an analogous manner to that

described above, through fixing fiducial velocities, two reference EOP days, or explicit constraint

equations. The current implementation at UTCSR involves constraint through a priori covariance,

and through the adjustment only of those sites with considerable velocity departures from the

nominal Minster and Jordan AM0-1 velocity [Minster and Jordan, 1978]. Alternatively, many sites

can be adjusted, and the resulting EOP series can be detrended with respect to an a priori series for

continuity. This approach is used when many sites velocities are adjusted for studies of global
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tectonics.

Site Position, Velocity, and Earth Orientation Solutions from UTCSR

With the above introduction as background, the several types of solutions for geodetic

parameters produced at UTCSR can be discussed. The first type of solution is performed annually

and represents an updated version of the UTCSR TRF. This solution spans the entire Lageos

mission from 1976 through the end of the reporting year, and adjusts mean site coordinates,

velocities for selected sites, and a time series of EOP's, most recently using 3 day resolution. Since

the series is reported to the International Earth Rotation Service and forms a significant portion of

the combined IERS EOP series and International Terrestrial Reference Frame (ITRF), it is important

that these series be expressed in a well defined reference frame, and hence not all sites, even those

with sufficient data, have adjusted velocities. In the most recent such solution, SSC(CSR)91L03,

seven sites in tectonically deforming regions had velocity adjustments: 7110 Monument Peak

(USA), 7109 Quincy (USA), 7838 Simosato (Japan), 7939 Matera (Italy), 7907 Arequipa (Peru),

7097 Easter Island (Chile), and 7123 Huahine (French Polynesia).

The EOP series associated with this solution are analyzed for the combined IERS series by the

IERS Central Bureau at the Paris Observatory. For the 1990 report, the EOP(CSR)91L03 series was

assessed at roughly the 0.6 mas level in x and y polar motion, and 0.07 ms in UTI, for the period

1986-1990 [IERS Annual Report, 1991]. This was among the most accurate of any series reported

that year. A typical polhode of recent polar motion as determined from UTCSR Lageos and IRIS

VLBI is presented in Figure 8. The considerable progress made by all space geodetic techniques is

evident when the history of such intercomparisons is recalled. Robertson et al. [1983] presents 5

mas agreement in pole position between UTCSR SLR and IRIS VLBI. Robertson et al. [1985]

presents agreement during 1984-1985 of 2 mas in pole position. Comparisons in BIH and IERS

annual reports from 1986 to 1990 trace the accuracies to their current submilliarcsecond level.
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Interestingly,Carteretal. [1984]alsopresentedoneof the first comparisons of EOP derived from

space geodetic techniques and that predicted from measurements of atmospheric angular momentum

(AAM), and demonstrated clearly the significant E1 Nifio event of 1983 and associated peak in

excess length of day. The seasonal discrepancy between space geodetic measurements and AAM

was also noted, and it was correctly conjectured to be largely due to the effects of the atmosphere

(stratosphere) above 50 mb.

A second type of solution produced on an annual basis adjusts all sites and velocities (with

sufficient data) for the basis of assessing global tectonic models. Roughly 30--40 sites have strong

velocity solutions [Watkins et al., 1989; Smith et al., 1991]. Relative motions for sites in Europe

derived from such solutions is presented in Figure 9. Alternatively, to test internal consistency of the

site solutions, independent solutions of few month duration can be determined for each site, and the

velocities inferred from these time series [Watkins, 1990]. Such a solution for the baseline length

between Monument Peak, CA, on the Pacific plate, and Quincy, CA, on the North American plate is

presented in Figure 10. The slope of the best fit line is the well known -25 mm/yr adjustment with

regard to the RM2 predicted velocity, and the rms scatter about the best fit line of 7 mm is

remarkably small for such a long observation period.

The accuracy of the epoch site coordinates can best be measured through comparison with an

independent technique with collocated observations. A careful comparison of SLR solutions

computed at UTCSR and VLBI solutions computed at GSFC for sites occupied primarily in 1988

resulted in rms agreements of 15, 21, and 22 mm in x, y, and z, respectively [Ray et al., 1990]. These

numbers include the uncertainties in each solution and the uncertainties in the survey ties connecting

the observing monuments of each technique. Analysis of the chi-square per degree of freedom

indicated that each techniques formal uncertainties should be scaled by approximately 2, resulting in

uncertainties of less than 10 mm in each component for the best observed sites. An extension of the
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Rayetal.paperanalyzing the results of site positions determined using significantly more data, and

requiring mapping with estimated velocities for both techniques is presented by Himwich et al. [this

issue].

By computing successive seven parameter transformations between the several month solutions

and the nominal TRF, the translational origin or geoeenter position can be determined. The most

significant proposed source of motion between the solid Earth, on which the tracking sites reside,

and the center of mass of the solid Earth-atmosphere-hydrosphere is mass redistribution in the ocean.

Figure 11 demonstrate the geocenter history in 15 day intervals since 1987. The rms about the mean

is 12 mm in X, 9 mm in Y, and 25 mm in Z. The source of the long period trend in X is unclear, but

it is statistically significant (rms after removal of best fit line is 9 mm), and may represent true long

Full analyses of the geocenter time series is the subject of a forthcomingperiod geocenter motion.

manuscript.

A third type of solution is performed each week, and is referred to as the UTCSR Earth

Orientation Rapid Service. This service involves the gathering of recent Lageos data, and the

computation of the EOP's in near real time, and provides prompt reports to the United States Naval

Observatory and the IERS for their rapid service Bulletins A and B. This solution has been

performed and reported weekly since 1982. Site coordinates in this operational service are held fixed

to the values from a previous annual solution and not readjusted, hence the EOP's from the

operational service are perhaps a few tenths of a milliarcsecond less accurate than those of the annual

solutions.

Future Improvements to SLR Derived Geodetic Parameters

A number of improvements lie on the horizon for the determination of geodetic parameters using

the SLR technique. The first of these is improved temporal resolution of EOP's obtained through

Kalman filtering of the orbit parameters. Because the SLR data are obtained each day, although
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somedaysmaybesparse,informationon the orbit and geodetic parameters is available on a daily

basis, although some knowledge of the spectral power of the unmodeled orbit excitations and high

frequency EOP excitation is required for optimal performance. The improved temporal resolution of

the space geodetic EOP series, which may also be possible with the use of GPS, will aid in the

understanding of momentum exchange between the components of the Earth system, particularly

between the atmosphere and solid Earth, at short periods. Although a manuscript on the application

of Kalman filtering of the Lageos orbit and the resulting high frequency EOP series is in preparation,

preliminary results are presented in Figure 12, which demonstrates the UTCSR Lageos 1 day x and y

pole positions plotted with GSFC processing of the high density, high quality VLBI ERDE

(Extended Research and Development Experiment) period in the fall of 1989. Both series are

differenced from a smoothed Lageos nominal series. The overall rms agreement in each coordinate

is 0.7 mas, although slightly better during the heart of the campaign (October). In addition,

determination of the diurnal and semidiurnal variations in EOP's induced primarily by ocean tides

has been demonstrated at the 20 microarcsecond level or better through analysis of a recent span of

high quality Lageos data from 1987-1991 [Watldns et al., 1991].

Another exciting development is the use of additional geodetic satellites such as Lageos-2 and

the Soviet Etalon-1 and Etalon-2. Lageos-2, an identical twin of the current Lageos-1, will be

launched in fall 1992 into an orbit similar to that of Lageos-1 but with an inclination of 52 degrees.

Assuming adequate tracking is available for both satellites, the use of observations to both satellites

in a simultaneous solution can reduce the time on site for SLR systems by approximately a factor of

two while retaining the same accuracy as currently obtained. The Etalon spacecraft, launched into

orbits of the Glonass spacecraft, similar to those of the Global Positioning System, can also provide

reduced time on site, but can also assist in the extension of the period over which the SLR derived

UT1 estimates can remain independent from those of VLBI. This is made possible by the
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attenuationat theEtalonaltitudeof the stochastic variations in even zonal harmonics of the Earth's

gravity field which drive the satellite node. The response of the nodal longitudes of the Etalon

spacecraft is roughly 10 times less to a given excitation in even zonal harmonics than those of

Lageos-1 or Lageos-2. Thus the current limit of approximately 50 days over which SLR can obtain

independent measurements of UT1 may be extended considerably.

CONCLUSIONS

Satellite laser ranging has matured over the last decade into one of the essential space geodesy

techniques. It has demonstrated centimeter site positioning and millimeter per year velocity

determinations in a frame tied dynamically to the mass center of the solid Earth-hydrosphere-

atmosphere system. Such a coordinate system is a requirement for studying long term eustatic sea

level rise and other global change phenomena. Earth orientation parameters determined with the

coordinate system have been produced in near real time operationally since 1983, at a relatively

modest cost. The SLR ranging to Lageos has also provided a rich spectrum of results based upon the

analysis of Lageos orbital dynamics. These include significant improvements in the knowledge of

the mean and variable components of the Earth's gravity field and the Earth's gravitational

parameter, The ability to measure the time variations of the Earth's gravity field has opened as

exciting area of study in relating global processes, including meteorologically derived mass transport

through changes in the satellite dynamics. Finally, new confirmation of General Relativity has been

obtained using the Lageos SLR data.

With the launching of Lageos-2 and Lageos-3, the future decade holds significant promise for

substantially improving the accuracy and applicability of the SLR technique.
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Fig. I. Evolution of the laser ranging network tracking Lageos from 1976 to 1991.

Fig. 2. Analysis of inclination residuals from Lageos Long Arc 9107. (a) Residuals using the

nominal dynamical model. (b) Residuals after adjusting dynamical model parameters. (c) First

derivative of the residuals in (a). (d) Power spectrum of the time series in (c).

Fig. 3. Analysis of longitude of the ascending node residuals from Lageos Long Arc 9107. (a)

Residuals using the nominal dynamical model. (b) First derivative of the residuals in (a). (c) Power

spectrum of the time series in (b). (d) Amplitude and (e) phase of the annual variation obtained by

complex demodulation of the time series in (b).

Fig. 4. Analysis of the eccentricity vector excitation residuals from Lagesos Long Arc 9107. The (a)
real and (b) imaginary parts of the eccentricity vector excitation (hup). The (c) amplitude and (d)

phase of the annual variation of the real part of Wp obtained by complex demodulation of the time
series in (a).

Fig. 5. Observed along-track acceleration for Lageos.

Fig. 6. Modified Earth Yarkovsky model compared to observed along-track acceleration during the
first 12.4 years of the Lageos mission.

Fig. 7. Combined models for Earth and Solar Yarkovsky, asymmetric reflectivity and atmospheric
drag compared to observed accelerations.

Fig. 8. Polar motion obtained from UTCSR Lageos and IRIS VLBI, 1987-89.

Fig. 9. Baseline rates

Fig. 10. Variability of the baseline length from Monument Peak to Quincy, 1982-90.

Fig. 11. Estimates of the translations along the x, y, and z axes of the instantaneous origin of the

terrestrial reference system with respect to the geocenter, I987-91.

Fig. 12. Kalman smoothed polar motion at a 1-day resolution from Lageos compared to GSFC VLBI

results during the 1989 ERDE Campaign.
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